|
內容簡介: |
随着膜科学技术日新月异的发展,膜生物反应器(Membrane Bioreactor,MBR)越来越广泛地应用于污水处理领域。《膜生物反应器:水和污水处理的原理与应用:原著第2版》采用将理论与工程分开的编写方式,旨在提供尽可能多的实用信息。
全书共分5章。第1章为MBR概述,介绍了MBR的定义、膜与MBR的发展史及MBR市场的扩展过程,总结了MBR的市场现状及其发展的主要推动力。第2章详细阐述MBR基本原理。第3章探讨了MBR的设计、运行和维护。第4章介绍了30余类技术产品及其详细技术信息。第5章根据膜构型和具体工艺,介绍了部分膜产品的应用情况及多家MBR产品公司的近60个工程实例。
|
關於作者: |
〔英〕Simon Judd、Claire Judd
|
目錄:
|
前言
编者简介
贡献者
1 绪论
2 基本原理
3 设计、运行与维护
4 商业化技术
5 工程实例
附录
附录A 单位换算
附录B MBR生物处理基本参数值
附录C 膜产品
缩略词
符号说明
术语表
索引
|
內容試閱:
|
Chapter 1
Introduction
Withacknowledgementstoinalphabeticalorderbyorganizationandcontributorlastname:
Section Name Organisation
1.2.1 Yiming Zeng Superstring
1.3.2 Ana Santos Cran.eldUniversity
1.4.1.1e2 Paul Jeffrey Cran.eldUniversity
1.4.2.1 Visvanathan Lingamurti Lingam Pillay DurbanUniversityofTechnology
TimYoung MBR Technology.
1.4.2.2 David de Haas GHD Pty Ltd
1.4.2.3 Xia Huang, Yuexiao Shen, Kang Xiao Tsinghua University
1.4.2.4 Sebastian Zacharias Cinzac Group
1.4.2.5 Hiroki Itokawa JapanSewageWorksAgency
1.4.2.6 A. Wahab Mohammad UniversitiKebangsaanMalaysia
1.4.2.7 TaoGuihe,KiranKekre,HarrySeah PUB
1.4.2.8 Christoph Brepols Erftverband
1.4.2.9 VictorFerre KubotaMembraneEurope
Josef Dusini Ladurner Acque
1.4.2.10 Darren Lawrence KochMembraneSystems
1.4.2.11 Daniel Sanchez Hera-AMASA
VictorFerre KubotaMembraneEurope
1.4.2.12 Stephen Kennedy Ovivo
1.4.2.13 Zakir Hirani MWH Americas Inc.
1.5 Ana Santos Cran.eldUniversity
1.1. DEFINITION
Theterm‘membranebioreactor’MBRappliestoallwaterandwastewatertreatmentprocessesintegratingapermselectivemembranewithabiologicalprocess.AllcurrentlyavailablecommercialMBRprocessesemploythemembraneostensiblyasa.lter,rejectingthesolidmaterialsdevelopedbythebiologicalprocesstoprovideaclari.edanddisinfectedproduct.ItisthistypeofMBR,thebiomassrejectionMBRSection1.1,whichformstheprimaryfocusofthisbook.TheprogressoftechnologicaldevelopmentandmarketpenetrationofMBRscanbeviewedinthecontextoftheirhistoricaldevel-opmentSection1.2,currentmarketpenetrationSection1.3,keydrivers
The MBR Book.
Copyright . 2011 Elsevier Ltd. All rights reserved.
The MBR Book
Section1.4andthestatusofMBRresearchSection1.5,allimpactingtosomedegreeonthefutureprospectsofthetechnologySection1.6.
1.2. HISTORICAL PERSPECTIVE
1.2.1. Membranes and Membrane Technology
Themembraneindustrydidnotexistuntiltheearlytwentiethcentury;themainresearchonmembraneseparationphenomenawasaimedatelucidatingthephysico-chemicalprinciplesoftheprocess,andthemechanismofdiffusion.However,someoftheseearly-stageachievementsstillimpactontheacademicresearchandindustrialapplicationstoday.TheseincludeFick’s1855phenomenologicallawsofdiffusion,van’tHoff’s1887,1888osmoticpres-sureequation,forwhichhewasawardedthe.rstNoblePrizeinChemistryin1901,andThomasGraham’spioneeringworkingasseparationusingbothporousmembranesanddensemembranesisstillrelevanttoday.Grahamdiscoveredthatrubberexhibitsselectivepermeabilitytodifferentgases,andalsofoundlow-molecularweightsubstancestobeconcentratedintheperme-atedgaswhenthemembraneporesizeisclosetothemeanfreepathofgasmoleculesGraham,1861,1866.Graham’sworkwasinspiredbySchmidt’s1856earlierstudy,wherehehadusedbovineheartmembranestheporedimensionbeing1e50nmtoseparatesolubleAcaciaearguablythe.rstdocumentedultra.ltrationUFexperiment.
The.rstsyntheticUFmembraneswerepreparedbyBechholdfromcollodionnitrocellulose.Bechholdwasalsothe.rsttomeasuremembranebubblepoints,andtoproposetheterm‘ultra.lter’Bechhold,1907.Otherimportantearlyresearchers,Elford,Zsigmondy,Bachmann,andFerry,etc.,furtherdevelopedBechhold’smembranepreparationmethod.CommercialapplicationofcollodionporousmembranescanbeattributedtoZsigmondy’slaboratoryattheUniversityofGoettingen,Germany;ZsigmondyandBach-mannwerethe.rsttoproposeamethodtoproduceporouscollodionmembraneinanindustrialscaleZsigmondy&Bachmann,1918,1922.Basedonthistechnology,theworld’s.rstcommercialmicroporousmembranesupplier,SartoriusWerkeGmbH,wasestablishedinGoettingenin1925,althoughitsproductsweremostlysoldtoresearchlaboratories.Theearlyporouscollodionmembraneformationmethodwasnamed‘dryinversion’,whichisstillinusetoday.
DuringWorldWarII,damagetoGermandistributionnetworksbybombingraidsledtothedevelopmentoftechniquesforrapidanalysisforbacteriainwatersupplies.UsingSartoriusmembranes,Mu¨llerandothersatHamburgUniversitydevelopedaneffectivemethodtocultivatemicro-organismsindrinkingwater.Thiswasthe.rstlarge-scaleapplicationofmicro.ltrationMFmembranes.FollowingonfromthisworkandinrecognitionofthestrategicimportanceofMFmembranes,AlexanderGoetz,aprofessorintheCaliforniaInstituteofTechnology,wassponsoredbytheUSmilitarytoduplicatetheSartoriusmembranetechnology.Goetzdevelopedanimprovedmembraneformationmethod,nowcalled‘vapour-inducedphaseseparation’.Themaininnovationofhismethodincludedusingacopolymerofcelluloseacetateandcellulosenitrateasthemembranematerial,andpreparingthemembraneinahighmoistureenvironment.ThistechnologywaslatertransferredtoLowellInc.,andin1954LowellestablishedtheMilliporeCorporationtocommer-cialisethemembrane.ThisrepresentstheincipientstagesoftheUSmicro-porousmembraneindustry.
Theperiodbetweenthe1960sandthe1980sisoftenregardedasbeingthegoldenageofmembranescience.Thecrucialbreakthroughwasthedevelop-mentoftheasymmetriccelluloseacetatemembranebyLoebandSourirajanin1963Loeb&Sourirajan,1964.LoebandSourirajan’smembranepreparationmethodisoftenreferredtoas‘wetphaseinversion’or‘non-solvent-inducedphaseseparation’NIPS.Microporousmembranespreparedbythismethodhaveanasymmetricporousstructure:averythinsurfacemicroporouslayerw0.2mmsupportedbyasubstratehavinglargerpores.Becauseofitsthinseparationlayer,theNIPSmembranedemonstratessigni.cantlyimproved.uxes.
TheLoebandSourirajanmembranepreparationmethodhadagreatin.uenceonthedevelopmentofreverseosmosisRO,UF,MFandgasseparation.LoebandSourirajan’sgoalwasfocusedonproducinghigh-.uxROmembranes,butotherresearchers,particularlyAlanS.Michaels,realizedthegeneralapplicabilityofthetechnique.MichaelswasthefounderofAmiconInc.Inthe1960s,AmiconInc.collaboratedwithDorr-OliverInc.todevelopnewkindsofUFmembranespreparedbyusingvariouspolymerssuchaspolyacrylonitrilePAN,polysulfonePS,polyvinylidenedi.uoridePVDFandothersMichaels,1963,applyingthenewproductsonanindustrialscale.
ThermallyinducedphaseseparationTIPSrepresentsanotherimportantimprovementinthedevelopmentofmembranetechnologies.InTIPS,polymeranditsdiluentsaremixedunderhightemperaturetoformauniformsolution.Graduallyreducingthetemperatureofthecastingsolutioncausesphaseseparationandconsequentlyaporousstructure.The.rstcommercialTIPSmembranemaybeattributedtoCastro1981.Inthefollowingtwodecades,TIPSmembraneshavebeenusedinavarietyofapplications,suchasbloodplasma.ltration,membranedistillation,fuelcellsandmedicaldressings.AdvantagesofTIPSmembranesincludehighporosity,highpermeationrate,highphysicalstrength,narrowporesizedistributionandgreaterwater.uxesthanthoseofNIPSmembranes:thepurewater.uxoftypicalTIPSMFmembranescommonlyexceeds1000Lperm2 membraneperhourperbarpressureLMHbar,comparedwith200e300LMHbarforNIPSUFandMFmaterials.TIPSmembranestypicallyusedforMFareof0.1e0.4mmporesize.
Twoothercommerciallyimportantmembraneproductionmethodsaretheradiationtracketchedandmeltextrusionandcold-stretchingmethods.
The MBR Book
Radiationtracketchingwasdevelopedinthe1960sFleischer,Price,&Walker,1969withlimitedapplicationinthemanufactureof.atmembraneduetoitspoorpermeabilityandhighcost.Themeltextrusionandcold-stretchingmethod,ontheotherhand,ismuchlowerincost.Themethodwas.rstdevelopedbyCelaneseCorp.in1974Druin,Loft,&Plovan,1974.In1977,MitsubishiRayonCorp.producedahollow-.breHFpolyethylenePEMFmembranebythismembraneformationmethod.Asanimmersedmembranemodule,theHFPEMFmembraneofMitsubishiRayonhasfoundmanyapplicationsinthe.eldofwastewatertreatment.
1.2.2. Membrane Bioreactor Technology
1.2.2.1. TheEarlyYears:1970se1990s
The.rstmembranebioreactorsMBRsweredevelopedcommerciallybyDorr-Oliverinthelate1960sBemberis,Hubbard,&Leonardet,1971,combiningUFwithaconventionalactivatedsludgeprocessCASP,forapplicationtoship-boardsewagetreatmentBailey,Bemberis,&Presti,1971.Otherbench-scalemembraneseparationsystemslinkedwithaCASPwerereportedataroundthesametimeHardt,Clesceri,Nemerow,&Washington,1970;Smith,Gregorio,&Talcott,1969.Thesesystemswereallbasedonwhathavecometobeknownas‘sidestream’con.gurationssMBR,Fig.1.1a,asopposedtothenowmorecommerciallysigni.cant‘immersed’con.gurationiMBR,Fig.1.1b.TheDorr-OlivermembranesewagetreatmentMSTprocesswasbasedon.at-sheetFSUFmembranesoperatedatwhatwouldnowbeconsideredexcessivepressures3.5barinletpressureandlow.uxes17Lm2 h,orLMH,yieldingmeanpermeabilitiesoflessthan10LMHbar.Nonetheless,theDorr-OliversystemsucceededinestablishingtheprincipleofcouplingaCASPwithamembranetosimultaneouslyconcentratethebiomasswhilstgeneratingaclari.ed,disinfectedproduct.ThesystemwasmarketedinJapanunderlicensetoSankiEngineering,withsomesuccessupuntiltheearly1990s.DevelopmentswerealsounderwayinSouthAfricawhichledtothe
Recirculated stream
a b
Sludge Out Sludge
FIG. 1.1 Con.gurations of a membrane bioreactor: a sidestream and b immersed.
commercializationofananaerobicdigesterUFADUFMBRbyWeirEnvigBotha,Sanderson,&Buckley,1992,foruseonhigh-strengthindustrialwastewaters.
Ataroundthistime,fromthelate1980stoearly1990s,otherimportantcommercialdevelopmentsweretakingplace.InJapan,thegovernment-insti-gatedwaterrecyclingprogrammepromptedpioneeringworkbyYamamoto,Hiasa,Mahmood,&Matsuo1989todevelopanimmersedHFUFMBRprocess,aswellasthedevelopmentofanFS-micro.ltrationiMBRbytheagriculturalmachinerycompany,KubotaSection4.2.1.Thissubsequentlyunderwentdemonstrationatpilotscale,.rstatHiroshimain199025m3day,or0.025megalitresperdayorMLDandthenatthecompany’sownsiteatSakai-Rinkaiin19920.110MLD.Bytheendof1996,therewerealready60KubotaplantsinstalledinJapanfordomesticwastewaterand,lateron,industrialef.uenttreatment,providingatotalinstalledcapacityof5.5MLD.AlsoinJapan,MitsubishiRayonintroduceditsSURMBRmembranemodule,basedonitsSteraporeproduct,in1993.
BoththeseproductstosomeextentdisplacedsomeoftheoldersidestreamsystemswhichhadbeenestablishedinJapan,thoughside-streamMBRscontinuetobeusedinJapanandelsewhere.Theinstallationofin-buildingwastewaterrecyclingplantsinJapanbasedontheOrelisEnvironmentformerlyRhodiaOrelisandbeforethisRho.nePoulencPLEIADE.FSsMBRsystem,actuallypre-datesthatoftheKubotaplantsforthisduty.ThePLEIADE.systemwasoriginallytrialledinFranceinthe1970sandby1999therewere125small-scalesystemsallbelow0.2MLDworldwide,themajorityofthesebeinginJapanandaroundadozeninFrance.TheDorr-OliverMSTsystemwassimilarlyrathermoresuccessfulinJapanthaninNorthAmericainthe1970sand1980sSutton,Mishra,Bratby,&Enegess,2002.WehrleEnvironmental,partoftheverywell-establishedWehrleWerkAGformedin1860ofGermany,hasbeenapplyingitsmultitubeMTsMBRspredominantlyemployingNoritX-FlowpolymericMTmembranemodulestoland.llleachatetreatmentsince1990.AsidestreamMBRDegremontsystembasedonceramicmembraneswasintroducedinthemid-1990s,andotherceramicmembraneproductshavealsobeenemployedinafewsMBRapplications.Thesepumpedsidestreamsystemsalltendtobeusedforindus-trialef.uenttreatmentapplicationsinvolvingrelativelylow.ows,suchthattheirmarketpenetrationcomparedwiththeimmersedsystems,particularlyinthemunicipalwatersector,hasbeenlimited.
AtaroundthesametimeasKubotaweredevelopingtheirproduct,intheUSAThetfordSystemsweredevelopingtheirCycle-Let.process,anothersidestreamprocess,forwastewaterrecyclingduties.ZenonEnvironmental,acompanyformedin1980andwhosubsequentlyacquiredThetfordSystems,weredevelopinganMBRsystem.Bytheearly1990s,theZenoGem.immersedHFUFMBRprocesshadbeenpatentedTonelli&Canning,1993;Tonelli&Behmann,1996,andthe.rstimmersedHFZeeWeed.module,the
The MBR Book
ZW145whichprovided145squarefeetofmembranearea,wasintroducedtothemarketin1993Section4.3.1.BytheendoftheMillenniumthetotalinstalledcapacityofZenonplantshadreached150MLD.
1.2.2.2. The Late 1990s Onwards: the Development of Other MBR Products
The.rstKubotamunicipalwastewatertreatmentworksinstalledoutsideJapanwasatPorlockintheUnitedKingdomin1997Section5.3.1.1,followingsuccessfultrialsatKingstonSeymourbyWessexWaterinthemid-1990s.The.rstZenonmembrane-basedplantofsimilarsizeinstalledoutsideoftheUSAwastheVeoliathenVivendiBiosep.plantatPerthesenGatinaisinFrancein1999Section5.3.1.1.Boththeseplantshaveapeak.owcapacityjustbelow2MLD,andrepresentlandmarkplantsinthedevelopmentandimplementationofimmersedMBRtechnology.
Bythelate1990s,however,otherMBRmembraneproductsandsystemswereunderdevelopment,leadingtoanexplosionofcommercialactivityfromtheturnoftheMillenniumtothepresentday.Whereasthe.rsthalfofthe1990ssawthelaunchofonlythreemajorimmersedMBRmembraneprod-ucts,originatingfromjusttwocountriesUSAandJapan,the.rst.veyearsofthefollowingdecadesawthelaunchofatleast10productsoriginatingfromsevencountries,coupledwiththreesigni.cantacquisitionsinthemid-noughtiesSection1.3.For12majorsuppliersTable1.1asat2010,therewereeitherexistingorplannedMBRinstallationsofmorethan10MLDcapacity.Inadditiontothoseproductslistedforwhichthereare‘.agship’largeplants,therearecurrentlyatleastanother33MBRmembraneproductsChapter4,allofwhichhavecometothemarketsincearound2000,inadditiontoanumberofproprietaryMBRtechnologiesbasedonafewofthemembraneproducts.
1.3. MARKET
1.3.1. General
MBRsystemshavebeenimplementedinmorethan200countriesIcon,2008;growthratesandtheextentofimplementationvaryregionallyaccordingtothestateofeconomicdevelopmentandinfrastructure.Commontoallregions,however,isthefactthatsalesofthetechnologyhavegenerallygrownfasterthantheGDPsofcountriesinstallingthem,signi.-cantlysoinChina,aswellasmorerapidlythantheindustriesthatusethemSrinivasan,2007;BCC,2008.Globalgrowthratesbetween9.5and12%areroutinelyquotedinreportsproducedbymarketanalysis,andthemarketvalueoftheMBRindustryispredictedtoapproach$0.5billion$500millionby2013.Datatakenfromtwosourcesfortheperiodbetween2000and2013indicateameangrowthrateof11.6e12.7%Fig.1.2.Thesedata
|
|