|
內容簡介: |
与机器学习领域很多偏重于理论的书相比,本书在简明扼要地阐明基本原理的基础上,侧重于介绍如何在Python环境下使用机器学习方法库,并通过大量实例清晰形象地展示了不同场景下机器学习方法的应用。从这个角度来说,本书是一本使机器学习算法通过Python实现真正落地的书,而这无疑将给想要或致力于机器学习应用的读者带来方法理解和实现上的巨大裨益。本书中的例子采用Python编写,使用了scikit-learn机器学习框架、自然语言工具包(NLTK)、Crab、langdetect、Spark、gensim和TensorFlow(深度学习框架),环境为Linux、Mac OS X或Windows平台的Python 2.7或3.3 版本。本书主要面向希望进入数据科学领域但对机器学习非常陌生的IT专业人员(最好熟悉Python语言)。此外,需要基本的数学知识(线性代数、微积分和概率论),以充分理解大部分章节的内容。
|
關於作者: |
作者简介:Giuseppe Bonaccorso 拥有12年机器学习和大数据方面的经验。他拥有意大利卡塔尼亚大学电子工程专业工程学硕士学位,然后在意大利罗马第二大学、英国埃塞克斯大学深造过。在他的职业生涯中,担任过公共管理、军事、公用事业、医疗保健、诊断和广告等多个业务领域的IT工程师,使用Java、Python、Hadoop、Spark、Theano和TensorFlow等多种技术进行过项目开发与管理。他的主要研究兴趣包括人工智能、机器学习、数据科学等。
译者简介:罗娜博士,副研究员,在华东理工大学信息科学工程学院任教。研究方向为机器学习算法及其在工业中的应用。作为项目负责人,先后承担了国家自然科学基金青年科学基金、上海市自然科学基金等多项课题的研究工作,并作为技术负责人承担了多项中石化科技攻关项目,发表相关学术论文20余篇,申请国家发明专利两项,登记软件著作权两项。在康奈尔大学访学期间,翻译此书。
|
|